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Abstract

The state estimation problem for bilinear stochastic systems
evolving on compact Lie groups and homogeneous spaces is
considered. The problem is motivated by some applications
involving rotational processes in three dimensions.

The theory of harmonic analysis on compact Lie groups is
used to define assumed density approximations which re-
sult in implementable suboptimal estimators for the state of
the bilinear system. The results of Monte Carlo simulations
are reported; these indicate that simple filters designed by
these techniques perform well as compared to other filters.
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I. INTRODUCTION

Fourier series analysis has been applied in several recent studies

[1] - [4] to estimation problems for stochastic processes evolving on the

A s

circle S1 . Willsky [4] used Fourier series methods to define "assumed

_ density" approximations for certain phase tracking and demodulation

L : problems. In fact, a system designed using these techniques performed
. better than other estimators, including an optimal phase-lock loop. E
L | In this paper we study bilinear‘systems evolving on compact Lie

groups or homogeneous spaces [29]. The optimal estimator is.in

general 1hfinite dimensional [7], and our approach to the design of
subopﬁmal estimators is a generalization of that of Willsky [4], whose work is §
reviewed . briefly in S'ection III. The basic approach involves the definition
of an "assumed density" form for the conditional density of the system

state at time t given observations up to time t. These densities are defined

via the techniques of harmonic analysis on compact Lie groups [5],[6] _
(which generalize the Fourier series on the Lie group Sl) . Our method differs ;

from most previous assumed density approximations in that our approximation !

! is defined on the appropriate compact manifold (as opposed to the usual
Gaussian approximations, for example, which are defined on an [73).

] This method also avoids the problem of merely truncating higher order terms

ki,

in a harmonic expansi.’on‘; as pointed out by Lo [18] and Willsky [4], such
higher order terms will not be ﬁegligible, especially if the filter is

E performing well. For an alternative approach to discrete-time estimation

problems on Lie groups and homogeneous spaces, see the work of Lo and

Eshleman [18-20], who use exponential Fourier densities to avoid the trun-

cation problem.

b i

In Section II we review some general properties of stochastic

bilinear systems and discuss the estimation problem for systems evolving
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on compact Lie groups and homogeneous spaces, Section III contains the
application of the technique to systems evolving on Sn, while Section IV
contains the'applicafion-CO systems on SO(n). Results of Monte Carlo
simulatibﬁs of the 82 estimator are presented in Section V. Finélly, the
Appendix reviews some necessary concepts from the theory of harmonic analy-
sis on compact Lie groups. Some of the concepts of this paper were intro-

duced in [21] and [22], but no simulation results were presented.




II, ESTIMATION FOR STOCHASTIC BILINEAR SYSTEMS

_ The basic stochastic bilinear system (or linear system with state-
dependent noise) considered here is described by the Ito stochastic diffe-

rential equation [4], [9-17], [21], [25]

N : N
= i .
dx(t) = {[Ap+% I Qij(t)AiAj]dt + I Agdw, (£)}x(t) (1)
i,j=1 i=]1 _
where x is an n-vector or an n x n matrix, the Ai are n x n matrices, Qij
is the (i,j)th element of Q, and w is a Brownian motion (Wiener) process
min(t,s)

wfth.strength Q(t) such that E[w(t)w'(s)] = [ Q(r)dr. Poilowing

the iotation of [8-11], we define &= {AU’AI""'AN?LA to be;the smallest
Lie algebra containihg these matrices. The corresponding connected matrix
Lie group is denoted by G -.{expS?TG. Then, if x is an n x n matrix and
x(to)ec, the solution x(t) of (1) evolves 6n G (i.e., x(t)eG for all t > 0)
in the mean-square sense -and almost surely [15-17]. If x is an n-vector,
then the solution of (1) evolves on the homogeneous space G'x(to).
Associated with the Ito equation (1) is a sequence of'equationé for
the powers of the state x(t) (see Brockett [9], [10]). 1If N(n;p) denotes
the binomial coefficient (n+§-1) , then given an n-vector x, we define i[?]

to be the N(n,p)-vector with components equal to the monomials (homogeneous

polynomials) of degree p in XyseoeesXos the components of x, scaled so that .

“i]lﬁ = "x[plll. Given an m x n matrix A, we denote by A[p] the unique
matrix which verifies
y = ax = y[p] - alPl Ir] : )

(e Y
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A[p] can be ‘interpreted as a linear operator on symmetric tensors of degree p
[9], and is known as the symmetrized Kronecker pt!' power of A [26]. It is

clear that if x satisfies the linear differential equation

x(t) = Ax(t) : (3)

then x[p:| also satisfies a linear differential equation

Pl = A[p]x["] © . : %)

We regard this as the definition of A[p], which is the infinitesimal version of

A[p]. In fact, A[p] can be easily computed from A [25].
It can easily be shown that if x satisfies (1), then x[p] satisfies

the Ito equation

N
CL ‘;x[p](t)dt+ v A x[p](t)dwi(t) (5)

Ind,.. N
dx (t)={A, + 3% zQ i y
[p] °Ip] i=1 [p]

% =

In addition, if the nxn matrix X satisfies (1), it is easy to show that X[p]

also satisfies (5). As we shall see later in the section, this sequence af

-equations is a valuable tool in the study of state estimation.

The observation model considered in this paper consists of linear
observations of the state corrupted by additive white noise, or
dz(t) = L(x(t)) dt + dv(t) ‘ (6)

where L is a linear operator and v is a Wiener process. This bilinear system-
linear obsgzrvation model is useful in the study of certain practical problems,
such as the S2 satellite tracking and SO(3) rigid body orientation estimaﬁion
problemé discussed in [13, Ch. 4] and [21, Sec. IV]. A

The remainder of the paper is devoted to the study of the estimation

* problem for two classes of systems of the form (1), (6), which are motivated

by the aforementioned examples. The first system comsists of the bilinear

state equation ’

TETTERE
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- dXx(t) =[A_+ 2 = Q. (t)AA]IX(t)dt+ § A X(Hdw, (t) ¢))
A L S s

with linear measurements q

B e e ol 2o

dzl(t) = X(t)h(t)dt + R% (Hdv(t) . (8)

where X(t) and {Ai} are nxn mafrices, zl(t) is a p-vector, w is a Wiener 4

process with strength Q(t) 2 0, v is a standard Wiener process independent 3
of w, and R > 0. More general linear measurements can obviously be con- :
sidered, but for simplicity of notation we restrict our attention to (8),
which arises in the star tracking example of [13, Ch. 4]. We will make ;

the crucial assumption that the Lie group G = {exp £} c is compact. :
The second system consists of the bilinear state equation (1) with

linear measurements

dz,(t) = H(t)x()de + REe)dv(t) (9)

where x(t) is an n-vector, Ai are n x n matrices, and Zgs V and w are as

above. It will be assumed that x evolves on a compact homogeneous space

[8], [13], [29])--i.e., the solution of (1) is

x(t) = X(t)x(0) . (10)

where X satisfies (7) with X(0) =I and evolves on the compact Lie group
G = {exp %} G
It is shown in [13] that, by a linear change of basis on the state

space, (7) and (1) can be transformed into equations which evolve on the

e

| . A
b compact spectal orthogonal group SO(n) = {Xem“"“lx'x=1, det X=+1} and

. the compact homogeneous space S“"'1 = {erR“Ix'x:l} (the (n-1)-sphere), respec-
tively. Hence, we need only consider systems evolving on SO(n) and S“-l

: (this is equivalent to the assumption that Ao.'Al,..,,Aﬁ are skew-symmetric

(131).




The estimation criterion which will be used for these two problems

is the constrained least-squares estimator, which is anmalogous to the cri-

s e |

terion used in [1], [4], and [21] for the phase estimation problem. That

«m;qnw«\?"ﬁmuf ey !

E ] is, for (7)-~(8) we wish to find X(tlt)’whiéh minimizes the conditional error

R &

covariance /

3, = E[erl(x() = X(e[1))' (K(®) =~ X(e[£)}]2}) an

subject to the SO(n) constraint X(tlt)'x(t]t) = I, where the notation (11)
denotes the conditional expectation given the o-field o{zi} generated by
E . "e observed process z; : {zl(s), 0 <s <t} up to time t, For (1), (9)

seek §(t|t) which minimizes

3, = ELGx(t) = %(e]©)' (x() = X(e|eN)]2p] - a2

n-1

subject to the S constraint ||x(t]|t)|] S x(t] ) "x(t|p) = 1.

It is easily shown [13] that the optimal estimates are,.respectively

Kt |V =X (e DX X(t |t)]_% : - a3)

~

~ t t - =
|y = "—:‘{Hﬁ | e 14

= v . s ve o - —a—

where the conditional expectation is denoted by the equivalent notationms

xcele) 2 E{x(t)]2;] & E1x(0)] PR : as) -

The sign in (13) is chosen to insure that det X(t|t) = +1 [23], Thus in

both cases we must compute the conditional expectation of the state (X(t) or

g B Y Y T | D B A T P 4 S0 TR WY T e

x(t)) given the past observations (z; = {zl(s), 0 <s <t}or {i;(s),

0<s <t}),




The equations for computing the conditional expectation can be derived
from the general nonlinear filtering equation [7] and the moment equation

(5). The resultant equations for the SO(n) system (7)-(8) are

t. [pl N ; t[pl
dEDX(t]= [(A +2 T Q.MA A HGIEIX T (t)ldt
b 0[p] > i,j=1 7 *[pl pl ® "

[p]

+ {Et[xf,p] (t)h* (t)X(t)]-—Et[Xv

I OEXOIR ™ ©dv, O a6)

dv) (1) = dz, (1) - X(t[Hh(tdt _ LA

[p]

where @ denotes Kronecker product and X~ is the vector containing the

v
elements of the matrix X[p] in lexicographic order [26], [32, p.64]. For the

Sﬂ;l system (1), (9), we have

dEt[x[p](t)] =[A + 3 § QA A ]Et[x[p]

(t)]dt
Ol “i,5=1 B p) p)

+ B % 01-E P 1E e (01 1 R L o)a v (8)

.- -

dv,(t) = dz,(t) - H(t)x(t|t)dt 4 (15)

The structure of these equations is quite similar to that of [4]--i.e.,
each estimator consists of an infinite band of filters, and the filter for the
pth moment is coupled only to those for the first and (p+l)sc moments. There-
fore, we are led to the design of éuboptimal estimators. The technique pro-
posed here is motivated by the highly successful use of folded normal assumed
density approximations in the phase tracking problem [4]; filters designed

using this technique performed very well as compared with other suboptimal

S Qs S ek i

estimators. We will describe similar techniques for the design of suboptimal

estimators on S" and SO(n). j s
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We first review the notions of Brownian motion and Gaussian densities
on Lie groups and homogeneous spaces. Yosida [28] proved that the funda-

mental solution of

32%%;51 - yAp(z,c) = 0 | (20)

wvhere y > C and A is the Laplace-Beltrami operator (Laplacian) on a Rieman~
nian homogeneous space M [5,13,29], is the density (with respect to the Rie-

mannian measure) of a Brownian motion on Ml
According to [5], the fundamental solution of (20) is given by

—A; (e-tg)y
p(x,t3xy,t,) = ;:L 5 ¢y (xp)e (21)

’

where }\1 and A afe the eigenvalues and the E:orfésbondiﬁg_ éigenfunctioné of- -
the Laplacian (see the Appendix). The function pix, b xo,to) is the solution
to (20) with initial condition equal to the singular distribution concentrateq
at x = Xq- Also, Grenander [27] defines a Gaussian (normal) density to be the
solution of (20) for some t,

The folded normal density F(8;1,y) used by Willsky as an assumed
density approximation for the phasg tr&_l;:ki_ng'proble‘m is indeed a normal
density on S1 in the sense of Grenander [4]; in fact, the trigonometric
polynomials e"ine are eigenfunctions of the Laplacian on Sl. Motivated
by the success of Willsky's suboptimal filter, we will design suboptimal

estimators for the SO(n) and s™ bilinear systems by employing normal assumed

1 yosida defines a Brownian motion process to be a temporally and spatially
homogeneous Markov process on M which satisfles a continuity condition of
Lindeberg's type. y |
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conditional densities of the form

«Aiy(t)
pGe,t) = I ¢, ()¢, (n(t))e i (22)
: i

where n(t) and y(t) are parameters of the density which are to be estimated.?

2 In order to assure the existence of a conditional density, it is sufficient

to assume that the system is "controllable from the noise" [10,13,17]. |
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III. ESTIMATION ON S"

In this section the suboptimal estimation technique discussed in
the previous section will be used in order to design filters for the s”
estimation problem (1),(9). The optimai constrained least-squares estimator
is described by (14) and (18)-(19). First, the suboptimal estimator for

52 will be described in detail; then the generalizatioq to s® will be

discussed,

In our discussion of estimation on Sz, we will refer to a point on
52 in terms of the Cartesian coordin;tes xbé (xl,xz,x3) or the polar
coordinates (§,4) (see the Appendix, in which harmonic analysis oﬁ s®
is summarized). According to the Appendix, the sphefical harmonics {Ylu}
(defined in (A.11)-(A.12)) are the eigenfunctions of the Laplacian ASZ
(defined in (A.10)), and all spherical harmonics of degree % have the same
eigenvalue -2(2+1). Thus the assumed density approximation is a normal

density on 82 of the form (22), as discussed in the previous section:

© £ 1) A
Pl.o.t)= £ £ Y, (8, Y, (100,10)e LUrDy®) o
£=0 m=-2
where * denotes complex conjugate. In other words,
-2 (241)y (t) (24)

egn () 2 EFIY (8(),6(0)] = ¥§ (D), A (8))e

In order to truncate the optimal estimator (18)-(19) after the

~
x[N](tlt) equation using the assumed density (23), we must compute

n

: Et[x[N](t)x‘(t)], or equivalently, x[N+1](t|t), in terms of ;[p](tlt),

p=12,...,N, However, if x(t|t) 1s known, so are clo(t) and cll(t). A

11

L

;
:
E



simple computation [13], [22] then shows that {CN+1 Sl = -(N+1),... ,N+1}
?

can be computed from

Cne1m® = Y1, (N0 A (“f” 1) (N+2) y(t)
= (_1')m [(N*’l*m)! 2N+3]15 cm(t)
g ra :
(N+1+m) m N+1,m (cfo(t)*'z lcu(t) IZ)%
m/2 :
. ill_(t_) e 2 2 1 (N+1) (N+2)
Ci"l (t) [‘éﬂ' (Clo(t)+ 2 ]cll(t) l ):l (25)

where sz are the associated Legendre functions (see (A.11)-(A.12)), Finally,

it is shown in [13] that there exists a nonsingﬁlar matrix T such that

Y (x)
Tx [N+1 ] = L : (26)
(N-1] :
% : :
Thus x[N+1](tlt) can be computed from {c ~(¥+1) < m < N+1} and

N+l,m’
;[N_ll(tlt). The optimal estimator (18) is truncated by substituting this
approximation for :'E[N+1](t|t) into the equation for )'E[N] (t |t) . Notice that
the entire procedure for truncating the optimal estimator can equivalently
be performed on the infinite set of coupled equations for the generalized

Fourier coefficients ¢ zm(t) , using the approximation (24).
We note that one can show that

a(t) £z D] <2

and this quantity can be used as a measure of our confidence in our estimate.

If :‘E(tlt) satisfies the assumed density (23),
> -y (t
alt) = [Ret[n) = YO @21

so Y = 0 (zero "variance”) implies =1, and Y = « (infinite vvariance") implies

s

o= 0 (sce [4] for the s analog).




alpedie diah eyt ace doge

Example 1: Suppose that we truncate the optimal 52 estimator (18)
. 1 '
after N = 1--i,e., we approximate x[zl(;[t) using the above approximation,
Assume that Q(t) = I and {Ai’ i=1,2,3} are given. Then the resulting

suboptimal estimator is (for Q(t) = 1)

~ N x
dx(t|t) = (A + 3 % AZ] &(t[t)dt
0 =i i

+ P(t)H'(t)R—l(t)[dzz(t) - H(t)x(t |)at] (28)

where the "covariance" matrix P(t) is given by

a2 2 . L o2 A2 o =3
PO =x (DG x|l -1V -3 (xj (tj+ xk(t‘t))ux(tlt)“ +3 @9

fori#i,i#k,j#%k, and
Pllj('f)m.—.ﬁl(tlt)i‘;j (t |4t) (n:?(t]t)u -1) . (30)

for 1 # j. It is shown in [37] that the matrix P(t) of (29)-(30) is posifive
semidefinite, and thus can be viewed as a covariance matrix. The results .of
Moﬂte Carlo simulations to evaluate the performance of this estimator are
presented in Sect}Pn ViE.:

The extension to Sn.of .his technique for co;xs&uctiné suboptimal

estimators is straightforward. The procedure uses the spherical harmonics _

_on S_f‘._ In polar coordinates, a point on S_r.l_can be .described by - .- .-

A
}-(91’62""’9n-1’¢) = (0,¢), where 0 j.ej < m-and 0 < ¢-< 2m. Also, the

spherical harmonics are denoted by

(Satp) "é" b 4 (ell--'oen_lli'(P)

X
£ ,(m) LMy oo, m )

tim_ ¢ pn-2 m m,_ +% (n-k-1)
el AR (sing,  ,) it cmktxln (cose, .
k=0 k k+l

(31)

>
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1 1! re m, >...2m
il where ¢ > 1 ey

(that is, the functions Yz (m) aTe eigenfunctions of the Laplace-Beltrami.

> 0 and C; are the Gegenbauer polynomials [33]

ﬁ operator with eigenvalue -£(n+2-1)). Hence the assumed density approximation

s

N
on S is

Plog.t)= = Y, (0,9 Y5 (N0, e L1yl o, E
£, (m) ; g
g : At i i
: Thatis, ¢, () SETY;  (6(t), p(t)] is assumed to be .
| c, =yt  (nm,we LR DYO (33 s
? £, (m) £.(m) i
The procedure for truncating the filter (18) is identical to the g case. 1

If x(t|t) is known, so are ¢

N(t), and \(t). Then {c

)(t) , and these can be used to compute y(t), x

fote [N+1] ]

N+1, (m) (t) } can be computed from (33), and x

can be computed from {CN+1 (i) (t)} and x[N-l](t|t). The estimator is truncated

by substituting this approximate expression for x[N+ 1]

? (18) for x N

(t]t) into the equation ; | 3

(t]v. s
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IV. ESTIMATION ON SO(n)

In this section we discuss the construction of suboptimal estimators
for the SO(n) estimation problem (7);(3). We will only consider.the S0(3)
problem; the results are extended to SO(n) in [13]. Tke ccncepts of harmonic
analysis on SO(3) presented in the Appendlx will be used extensively.

Consider the sequence {D , £=0,1,...} of irreducible unitary
representations of SO(3), as defined in (A.5)-(A.6). TheoremA.l implies
that, for fixed g, the matrix elements '{D; o' "4sm.n < 4} are eigenfunctions
of the Laplacian ASO(&)(definEd in (A.4))with the same eigenvalue A ; also,
all elgenfunctlons of the Laplacian can be written as linear combination of
the {Dmn}. Hence, the assumed density which will be used to truncate the
optimal estimator (16)~(17) is a normal density on SO(3) of the form (22):

-2,Y(t)
@ £ 2 2 * £
pR,t)= % $ D” (R)YD. (qp(t) e (34)
2=0 m,n=-2 i o T

where R, 1(t) ¢ SO(3) and y(t) is a scalar. Thatis,

L B b b *
cmn(t) =E [Dmn('n(t)) ] (35)
is assumed to be
-2, v(t)
b (1= Bl e (36)

The procedure for truncating the filter (16) is similar to the Sn case,
although we make use of some additional concepts from representation theory.
If &(t[t) is known, so are {c (t) -1 <m,n <1}, since D1 is equivalent to
the self-representation of SO(3) . Define the matrix C (t) with elements

L ;
cmn(t), 2 <m,n < 2; then

o . -2)
A A S et = o aw o en” e

1\r(t)

e e D B T e s s s,

S A N s i L S
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" chosen to work with the X

-Zkly(ﬂ
=I.e (37)

since D1 is unitary (here C is the hermitian transpose of C). Thus y(t) can

be computed from

y(t) = "'2_)%_ log [} tr A(t)] . (38)
1

Then the elements of 7)(t) can be computed from (36) and (38), since Dl('n(t))
is similar to 7)(t). Once y(t) and 7(t) have been computed, {cf:;l :
-(N+1) <m,n <N+1} are computed from the formula (36).

In order to truncate (16) after the Nth moment equation, we must

[N]

approximate Et[xv (t)h' (£)X(t)]; however, this matrix consists of time-varying

deterministic functions multiplying elements of ﬁ[N+1] (tit) . So we will show
how to approximate this matrix, The symmetrized Kronecker pth power X[p]
el such that ux[p] | = ||x“p = 1 furnishes

a representation of SO(3) which is reducible [26]. It is shown in [13] that

operating on the symmetric tensors x

there is a nonsingular matrix T such that

e Dheg. o
R v
o i ) . (39)
0 xtp-21 |

The matrix T is related to the Clebsch~Gordan coefficients[6], but T can
also be computed by the method of Gantmacher [34, p. 160]. It is clear
from the decomposition(39) that X[N+ 1 NJrl(t)
and‘)?[N—l]'(tlt). The optimal estimator (16) is truncated by substituting
this approximation into the equation for )?[N](tlt) %

(t|t) can be computed from C

‘We note here that, due to the decomposition (39), the estimation
equations and the truncation procedure could have been expressed solely.
in terms of the irreducible representations Dp(x(t)) . However, we have
[p) equations primarily for ease of notation. For
large N, the Dp equations would provide significant computational savings

over the X[p ] equations, as these are redundant; however, the practical .,

implementation of this technique will probably be limited to small values of N.




V. SIMULATION RESULTS

As an illustration of the techniques presented in the previous sections,
the first order filter (FOF) of Example 1(Section III) was evaluated by means
of digital Monte Carlo simulations. It was compared to both the extended
Kalman filter (EKF) [7] and the Gustafson-Speyer linear, minimum-variance
quadrature filter (LQF) [24]. Identical noise sequences were used to allow
direct comparisons.

The system considered was the S2 system, i.e.,

3
dx(t) = Fx(t)dt+ ¢ Ai x(t) dwi(t) (40)
i=1
dz(t) = x(t) dt + rl/2 dv(t) (41)
3 1 3 2 ]
where F= & f A +-q I A,°, and {A_,i=1,2,3} are the skew-symmetric
ii 2 i i
i=1 i=1 .
matrices
0 0 0 0 0 1 0 -1 0
Al =10 0 -1 A2 =10 0 O A3 ={1 0 O (42)
0 1 0 -1 0 0 0 0 O

Also, w(t) has strength qI; and v has strength I. In this experiment,
the nominal angular velocities { fi,i=1,2,3} were chosen {:o be 100.0, and

q and‘r were varied.
For all three filters, the normalized estimate x(f) = i(t[i)/ “;(tlt) Il was

used. The filters have an identical structure for the approximate % equation:
L ~ 1 ~
dx(t[t) = Fx(t|t) + = P(t) [dz(t) - x(t|t)dt] . (42)

However, for the FOF, P(t) is given by the highly nonlinear memoryless
equations (29)~(30). In the EKF, P(t) satisfies the Riccati equation

£ Pt = FP() + POF' + q0Gxe]0))e’ xtele) ~ S popr () 43)

where

G(X) = [Alx' A2X, A3X] * €44)
Since the Riccati equation (43) is a function of x(tlt), the P(t) calculation
in the EKF requires extensive on-line computation, which represents a con-
siderable burden. 17
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In the LQF, P(t) is given as the solution of the coupled dynamic equations

fﬁ P(t) = FP(t) + P(t)F' + A(X(t),t) - % P(t)P' (L) (45)
%E X(t) = FX(t) + X(£)F' + A(X(t),¢t) (46)

where A(X(t),t) is a diagonal matrix with ith component

3
B0y = e T )y ()0, () (47)

Notice that these equations for P(t) and X(t) can be calculated off-line,
but the LQF thus has a considerable storage requirement. Because P(t) in
the FOF is only given by a memoryless nonlinearity, this filter requires
considerably less storage than the LQF and less on-line computation than the
EKF.

Our approach to the statistical analysis of the Monte Carlo simulations
closely parallels that of Bucy and his associates [1], [3], [35]. The steady-
state mean-squared error

3
=Bl - %0]2 = 5 B0 - X 1)%) (48)
: i=1 *

where ;1(t) denotes the estimate of the ith component of the state xi(t), was
used as the performance criterion. If {xn} and {;n}, i=1,...,N, are se-
quences of independent realizations of x(t) and %(t), respectively, then the
statistic

b= = =X . (49)

n=1 i

is an approximation to Wy for sufficiently large N. In fact, by the Central
Limit Theorem [36, p. 278], ﬁz is asymptotically normal with

E[3,] = u, (50)
- 1 : 2
var [u.Z] - 1:11 (u4)1 + 2(P«4)12 + 2(“4)13 + 2(1*4)23 - (Vnz) ; (51)

where (p4)1 -} B[‘xi(t) - ;1“))4] and

e -

NS

Slaiche L s




IR L ——

()5 = ELG(8) = % (0 e, (0) - % ()71,

Thus, for large N, with nrobability 0.9974, the 30 confidence interval is

given by

|p2 - ﬁ2| < 3Vvar (ﬁz) 4 (52)

or equivalently,

ﬁZ ﬁZ
Pr 1+ 3va s W, ST -adal" 0.99.74 . (53)
where 2
var (u.z)
O o e—— . (54)
@ )2 . iy 5
3

In the Monte Carlo simulations, « was estimated from the samples (using
sample means as in (49)), and approximate confidence intervals were thus
computed.
In the experiment, 15 sample paths, each of which contained 1000-
! steps of length .001 seconds, were run in each simulation. The first 200

samples in each sample path were discarded to allow the transients to decay,

so the remaining 800 samples represented steady-state. If all the steady-
state errors were averaged as in (49), this would lead to 12000 samples of
the steady-state error. However, as noted in [4], [24] and [35], adjacent

__errors in each path are correlated, so the effective Monte Carlo length is

somewhere in the range between N=1200 and N=12000. The three standard

. — . i s

deviation confidence 1ntervalg wéré cgléula-;:e& for botit values of N.
The results of the simulations are presented in Table I. The 3¢

confidence intervals I1 (for N = 12000) and I2 (_for N = 1200) are shown.

* The results of this approximate statistical analysis of the Monte Carlo

simulations indicate that, for this simple example, the FOF

‘performs comparably to the LQF, and better than the EKF.

The FOF seems to perform better in comparison to

19
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the other filters as q increases, due to fhe increasing dominance of the
bilinear noise term in the system equation (40). These results are significant,
due to the fact that the FOF designed here requires considerably less storage

and computation than the other filters (no additional differential equations or

storage for P(t) are required).

M.S. Error I1 I2
(N=12000) (N=1200)

[8.92,10.52]

45
FOF 9.65

[9.41,9.91]

EKF 10.21 [9.96,10.48) [9.45,11.11)

LQF 9.49 [9.26,9.75] (8.78,10.34)

FOF 11.69 (11.39,12.01] [10.79,12.77]

[11.44,12.07]) [10.84,12.82]).

EKF 11.75
LQF 11.69

(11.39,12.01] [10.79,12.77]

FOF

170.38

(165.26,175.82]

(155.19,188.871

- EKF

193.75

[188.74,199.04]

[178.74,211.51]

LQF

170.65

[1€5.58,176.03]

[155.60,188.92]

Table I.

Monte Carlo M.S. Estimation Error(s)

(x1073)




VIII. CONCLUSIONS

The state estimation problem for bilinear stochastic systems evolving i
on compact Lie groups and homogeneous space has been considered. The ; ?
techniques of harmonic analysis on compact Lie groups have been applied to |
the design of suboptimal estimators for such systems. Monte Carlo simula-
tions of a simple example indicate that a computationally simple filter designed ’

by these methods performs favorably as compared to two other filters.

B n s e
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APPENDIX - HARMONIC ANALYSIS ON COMPACT LIE GROUPS

In this appendix we summarize some facts frow the theory of harmonic
PP y

analysis on Lie groups. For details of group representations see references

[5,6,13,29,30].
/

Definition A.1: A finite-dimensional matrix representation of a
compact Lie group G is a continuous homomorphism D which maps G into the
group of nohsingular linear transformations on a finite dimensional vector

space V. The representative ring of G is the ring generated over the field

of complex numbers by the set of all continuous functions Dij on G which

are matrix elements of some irreducible representation D.

The Peter-Weyl theorem is the major result in harmonic analysis on
compact Lie groups [5,6,29,30]. It gives the direct sum decomposition of

L2(G), the space of square integrable functions with respect to the Haar

measure ag:
: (A.1)

& v
LG =@ucp g

where A is the set of equivalence classes of finite dimensional irreducible
: 2
representations of G, and Va denotes the vector space spanned by the (na)“
functions [Da;l,j=1,...,n ¥
PR
The Laplace-Beltrami operator (Laplacian) on a Lie group or Riemannian

homogeneous space is discussed in [5], [13] and [29]. Some examples will be

presented here, but one very important result for our purposes is the following.
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Theorem A.1 [5, p. 40], [29, p. 257): Let G be a compact Lie group,

and let Va be defined as in equation (A.1). Then each function ¢ ¢ V“ is an
eigenfunction of the Laplacian p, and all ¢ ¢ VC/ have the same eigenvalue

» . Conversely, each eigenfunction ¢ ¢f the Laplacian is an element of the
representative ring.

Hence, harmonic analysis on a compact Lie group can be performed
either in terms of the representative ring or the eigenfunctions of the
Laplacian, since these two sets of functions are the same. In this paper we
are primarily conc_:emed with the application of these results to the special
orthogonal group SO(n) and the n-sphere gt

The Lie group SO(n) is defined by

nxn

SO(n) = (X eR .7 |X'X=1, detX=+1} . (a.2)

The theory of representations of SO(n) is discussed in [13], [26]; for this
paper we need only consider SO(3). Any matrix R in SO(3) can be described
in local coordinates in terms of the Euler angles ¢, 6, ¥, domain
0<¢<2m,0<06<2r,0c<y <2 [6]. An element of S0(3) will thus
be denoted by R(4,6,¥) or just (¢,6,¥). :

In the Euler angle co.or.d.inates, the (unnormalized) Haar me;':xsure is

du(e,8,Y) = sinedededy (A.3)

and the corresponding Laplace-Beltrami operator is given by [31]

2 2 2

1 d : d 1 ) d d
- = 8 =)+ ——— (== - 2 cos + — 4
830(3) = sins 28 (sin ae)+ 2 "ap2 m d9p3Y  dv2 sl

sin 9

Talman [6] computes a sequence D"(ca, e,v), £=0,1,..., of unitary
irreducible representations of SO(3); its matrix elements are given by ‘

L L J=n _~imy .8 -iny (A.5
Dmn(m,e,w) =i e e (e)e (A.5)

where

23
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a? (o) = 5 (1)t Lerm)(e-m)t (sn)t (4=n) 1E

mn t (£+m=t)! (t+n-m)1t! (g -n-t)!

24+ m-n-2t/ 2 -m /&
A L(g)s“1t+n1ﬁ(;)

2 2 (A.6)

for -4 <m,n < g. Here t is summed over all nonnegative integer's such that

the arguments of the factorial functions in (A.6) are nonnegative: i.e. ;

m-nsts i+ m, Detet~n,

In fact, these are (up to equivalence) all of the irreducible representations of

SO(3). The Peter-Weyl Theorem yields the decomposition

L) e v, @.7)

where Hz is the vector space spanned by the (24+ l)2 functions

2
(Bani M= =f, ..., 8).

The n-sphere S" = {xer™*

|x'x = 1} is diffeomorphic to the homoge-
neous space SO(n)/SO(n-1). Harmonic analysis on s™ is studied in terms of

the spherical harmonics [6,30,33}. The space H, of spherical harmonics of

A

degree & can be characterized as the eigenspace of the SO(n+l)-invariant

A _ on S" with eigenvalue -2(n-1+2); other equivalent characterizations are

S
given in [13].

n

In particular, we consider the 2-sphere Sz. Any point (xl,xz,xB)
on S2 can be expressed in the polar coordinates (0,¢), where 0 <6<,

0 < ¢ < 27, by defining

X. = C0SQ; X, = 8in® cosey; x, = sing sino . ¢A.8)

1 2 3
* The Riemannian measure invariant under the action of SO(3) is

du(8,¢) = siné dedey . (A.9)

The corresponding invariant Laplace-Beltrami operator is

24
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The normalized spherical harmonics of degree £ on S2 are defined by [6])

3
m[(g-m)! (22+1)}]°? imo S
Yzm(e’q’) =) [(z+m)! 4n ] sz(cose) - (a.11) -

Y, o690 = DT (6,0) (a.12)

for ¢=0,1,...and m=20,1,..., 4, where P‘em'(.cos 2) are the associated

Legendre functions and * denotes complex conjugate. Notice that Ylm is an

eigenfunction of A

with eigenvalue -2(%+1).
.S o

2
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